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NONLINEAR INTERACTION OF DETUNED INSTABILITY WAVES IN

BOUNDARY-LAYER TRANSITION: 2. AMPLITUDE EQUATIONS

Sang Soo Lee
Dynacs Engineering Co., Inc., NASA Lewis Research Center Group

2001 Aerospace Parkway, Brook Park, OH 44142

Abstract

The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-
triads is presented. In this part of the analysis, the system of partial differential critical-
layer equations derived in Part 1 is solved ?,nalytically to yield the amplitude equations
which are analyzed using a combination of asymptotic and numerical methods. Numer-
ical solutions of the inviscid non-equilibrium oblique-mode amplitude equations show
that the frequency-detuned self-interaction enhances the growth of the lower-frequency
oblique modes more than the higher-frequency ones. All amplitudes become singular
at the same finite downstream position. The frequency detuning delays the occurrence
of the singularity. The spanwise-periodic mean-flow distortion and low-frequency non-
linear modes are generated by the critical-layer interaction between frequency-detuned
oblique modes. The nonlinear mean flow and higher harmonics as well as the primary
instabilities become as large as the base mean flow in the inviscid wall layer in the down-
strearn region where the distance from the singularity is of the order of the wavelength

scale.



1. Introduction and summary of Part 1

The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-
triads in boundary layers with and without mean pressure gradient was obtained in Part
1 (Lee 1998b) ! . Each resonant-triad is composed of a fundamental plane wave and a
pair of subharmonic oblique modes. It is shown that the resonant-triads can nonlinearly
interact within the common critical layer when their frequencies are different by a factor
whose magnitude is of the order of the growth rates multiplied by the wavenumbers.

If the (fundamental) frequencies of the resonant-triads are sufficiently detuned, the
plane and oblique modes of each resonant-triad first nonlinearly interact between themselves.
Their growth is not affected by the existence of the other resonant-triads and the growth
rates are increased due to the parametric-resonance and self-interaction effects (of a single
resonant-triad interaction as shown by Goldstein & Lee 1992). The frequency-detuned
resonant-triads start to interact between themselves at the downstream position where the
instability growth rates become large enough to be equal to the magnitude of the phase
speed differences (of the plane waves). Eventually, as the magnitude of the growth rates
approaches that of the wavenumbers, most of the unstable waves whose scaled Strouhal
numbers are different by nearly O(1) can nonlinearly interact. In this downstream region,
the frequency range in which the resonant-triads can nonlinearly interact expands to cover
the entire range of linearly unstable waves.

The results of experimental study by Corke & Gruber (1996) (an extensive survey on

!t appeared in parentheses in the last term in (3.1) of Part 1 must be replaced by ti, ific,Ye; in front of
the square brackets in (5.6) of Part 1 must be replaced by iYc,, and Ag” in (7.60) of Part 1 must be replaced
by AS").
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resonant-triad interaction can be found in Kachanov 1994) and direct numerical simulations
by Liu & Maslowe (1998) in Falkner-Skan boundary layers are in good agreement with the
resonant-triad theory of Goldstein & Lee (1992). The parametric-resonance-, self- and
mutual-interactions and back-reaction are identified and shown to play major role in the
transition process, especially in the adverse-pressure-gradient boundary layer.

The system of partial differential critical-layer equations can be solved Both analytically
(Goldstein & Choi 1989; Goldstein & Lee 1992, 1993; Wu 1992, 1995; Wu, Lee & Cowley
1993) and numerically (Lee 1997a). In this part of the study, the system of critical-layer
equations given in §7 of Part 1 will be solved analytically and the amplitude equations
(without the back-reaction term in the plane-wave amplitude equation) will be presented
along with numerical solutions. The analytical solutions of the critical-layer equations are
obtained in §2. The frequency-detuned non-equilibrium amplitude equations are presented
in §3 and their large frequency-detuning limit and asymptotic singular solutions are given
in §4 and §5, respectively. The viscous limit of the amplitude equations is obtained in
§6. The velocity jumps across the critical layer for the nonlinearly-generated low-frequency
modes are given in §7. Numerical solutions of the frequency-detuned quasi-equilibrium
(i.e. viscous-limit) amplitude equations are presented in §8. The frequency-detuned non-
equilibrium amplitude equations of the oblique modes are numerically solved in §9. The
concluding remarks are given in §10.

In the rest of this section we will give a brief summary of Part 1 to allow the reader to
follow along without consulting Part 1 too often.

In the non-equilibrium critical layer the mean convection effect balances with the

growth and viscous effects. If we introduce the wavenumber parameter ¢ and the local-



growth-rate parameter o” to characterize the small wavenumber and the ratio of the small
local growth rate to the wavenumber, respectively, the generalized scaling of Lee (1997a)
can be written as (see also (1.2.2) — (1.2.4) where henceforth an I at the beginning of an

equation number will indicate an equation given in Part 1), for -J <7< J,
a, =0[a;+0(o")], & =0[5,+0(c")], ¢ =0[g,+0(0")], B, = By, Yoy = 0¥y, (1.1)
z; = oz, (1.2)
p=0c""'p for 173 and pu=0(l) for O0<rgl, (1.3)

where ¢, and ¢, are the (nearly equal) phase velocities of the two-dimensional and oblique
modes respectively, a;, is the streamwise wavenumber of the plane wave, 3, represents the
spanwise wavenumber of the oblique mode, y., is the critical level where the base mean-flow
velocity is equal to the real part of the phase velocity, &,, &,, 3, and Y,, are order-one real
constants and g is the normalized mean pressure gradient. The subscript 7 is used to denote
the quantities of the jth resonant triad. However, the subscript 0 for the quantities of the
‘reference’ Oth resonant-triad will be omitted for notational simplicity.

The local-growth-rate exponent r is a function of the streamwise coordinate since the
instability growth rates are varying. The frequency-detuned non-equilibrium analysis of
this paper is valid for any value of ». Each analysis for a specific value of r covers different
stage of the non-equilibrium critical-layer evolution (see table 1 of Lee 1997a). A composite
solution could be obtained to cover a series of nonlinear stages.

The jth resonant triad is composed of a single two-dimensional mode and a pair of
subharmonic oblique modes. The phase speed of the plane wave is assumed to be nearly

equal to that of the oblique modes of the same resonant-triad. This resonance condition is
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satisfied when the propagation angle of the oblique mode # defined as (also as (1.5.29))

0 = cos™! (%o’z/"y) (1.4)

is about 7/3.

The nondimensional frequency or unscaled Strouhal number s, of the fundamental two-
dimensional mode of the jth resonant-triad is equal to a,¢, and the scaled Strouhal number
5, is given by (also by (I1.2.5))

s, = 028, = o2&z, (1.5)

The difference between the scaled Strouhal numbers of the jth and the ‘reference’ Oth

resonant-triads is given by (also by (1.2.6)) (Lee 1997b, 1998a)
5,=31+0")x) or s,=s(14+3%) for —-J<3<, (1.8)

where
X=o0'x (1.7)

It was shown by (1.5.22) that the scaled phase velocity of the jth resonant-triad, ¢, is different
from that of the Oth resonant-triad, ¢ by O(¢"), which is the additional resonance condition
that is required for the nonlinear interaction between the frequency-detuned resonant-triads
to occur in the common critical layer.

In the non-equilibrium critical-layer analysis, the Reynolds number is scaled as (also
as (1.2.8))

A= 1/(c¥*Ra), (1.8)
and the amplitudes are scaled as (also as (1.2.9)), for all 3,

€d = U4T+17 03g = g2 = USH'I, (1-9)



where €34, 034 and g2 are the amplitude scalings of the plane wave, oblique modes and
nonlinearly-generated low-frequency (spanwise-periodic) modes.

The scalings given above are for the long-wavelength small-growth-rate instabilities
in boundary layers, for example, in the high-Reynolds-number adverse-pressure-gradient
boundary layer or in the downstream non-equilibrium stage of the Blasius boundary layer.
Their frequencies are of the order of the wavenumber scaling squared and their critical layers
are distinct from the viscous wall layer.

The multi-layer structure for the non-equilibrium critical-layer analysis was given in
figure 1 of Part 1. The unsteady flows in the main boundary layer (y = O(1)), the inviscid
wall layer (y = O(0)), and the viscous Stokes layer 2 (y = O(c3"/?%1)) are governed by linear
dynamics. The viscous Stokes-layer effect was included in order to make the analysis valid
in the viscous limit. The solutions in the inviscid wall layer become singular at the critical
level, therefore, they have to be rescaled in the critical layer. The nonlinear interaction
‘between instability waves of the frequency-detuned resonant-triads first occurs within the
common critical layer whose thickness is of O(o7*1).

The streamwise velocity in the main boundary layer is given by (also by (1.3.1)) (Lee

1997b, 1998a)

J J
u=U+ €y Z ReB,(z21)®,,(y, z1)e™? + 634 Z Re2A4,(z1)U,(y, z1)e X% cos Z,

=~J ==J

+é02 ) > Relozpe(y,21,2,t1) +...,  (1.10)
7 £

where

X,=o0a,x—0%5t, Z,=0p,z, (1.11)

2y = O(¢®/?*+1A1/2) when A € 1.



U is the base mean flow velocity, AJ and B’_,, denote the oblique and plane wave amplitudes,
respectively, and t; is defined by (1.5.24).

The jump equations are obtained from the requirement that the velocity jumps across
the critical layer which are calculated from the critical-layer solutions are equal to those
calculated from the external solutions. They must be solved with the system of critical-layer
equations to determine the unknown instability amplitudes.

The system of partial differential critical-layer equations along with the transverse
boundary conditions and the jump equations are presented in §7 of Part 1. They are
normalized in such a way that their nonlinear growth parts are free from any mean-flow-
dependent parameter apart from A. The normalized variables in the critical-layer equations

that are relevant to this part of the paper are, as in (1.3.19), (1.5.26) and (1.7.1) - (1.7.4),

3 2) 1 0 2
F=k({lr,o - - — T o= -(2) _ ¢ = 3-r (1
Z=K (2Twaz1 :co) , A= PRk X= ,.{wa, ayp = _RTS,E [u o (ZTOYC) ] )
(1.12)
M)V e ia s s p
A,/Dy,(%) = (—%éﬂw/mﬁ B,/D24,(%) = %{—e‘-’x“‘ﬂBﬂ (1.13)

where M = 87Y.32/(r262%) as defined by (1.7.5), Dy,,(Z) = exp [%ia (X, + M) — i])‘(i:] as
given by (1.7.6), & is a normalization parameter which can be chosen arbitrarily, z,, Xo
and 7, are the coordinate origin shifts (see (1.7.58) and (1.7.62)), 7, is the scaled Blasius
skin friction, 7,, denotes the total wall-shear stress (that is the sum of the Blasius skin
friction and the correction due to the mean pressure gradient) as in (I.3.15) and (I.3.16)

and x = x + O(o) as in (1.5.23).



2. Solutions of the critical-layer equations

The analytical solutions of the partial differential critical-layer equations given in §7 of

Part 1 will be obtained in this section.

As in the previous studies (Wu et al. 1993; Goldstein & Lee 1993; Wu 1995; Lee 1997a),

the Fourier transform with respect to 7 will be used,
A~ ® _iknar= - 1 [% sknAc=
Q@k)= [ @i, Q@ =5 [ Gk (21)

where Q = F{Q} is the Fourier transform of Q. The velocity jump across the critical layer

can be obtained from the Fourier transform by putting & = 0,
. o
d@k=0)= [ Q@ nan (2:2)
In order to simplify the presentation we will put
Cl =z -1z, Cg =7 —Tg, hs = ‘rsin2 9, (23)
and

(G Ga) = exp [£3 (3méu + ) ¢F) - (2.4)

2.1. The leading-order equation

The solution of (I.7.8) which satisfies the transverse boundary condition (I.7.9) can be
obtained by taking the Fourier transform of (I1.7.8), solving the resulting equation and then

taking the inverse Fourier transform of le)(i, k). The solution is

QM = eIy, (2, 1), (2.5)
where
I(a,m)= [ deie™ & (G500 A, (m) (2.6)
8



2.2. The second-order equations

In order to simplify the presentation we will only show the Fourier transforms of the solutions
of (1.7.10), (1.7.11) and (1.7.14) which satisfy the boundary conditions (1.7.20) and (1.7.21).

They are

Fw@ en=-ir s [ dnddza,b), 2.7)
&1V TR

F {Wé?'-l)u,f’ Uégu,ln} (f’k) =7 /_oo dzy {i, _(QCI + k)} [‘71.3(@ 1, k) + K:J,l(f, z1,k)],

(2.8)

F{W 0 VSt } @8 = 3200 [~ ak{ =i, k} [PF/RH(-D)A,-o(82) Ad(2a + B)
—2h, e E /6 /_ °:° dk, /_ °; koG (R A, o0 + k1) Ae(Ea + kz)] . (29)
where
Toa(B, 21, k) = E5, (ks —CORH (k) A, po(21) A3 (21 - ), (2.10)
Koe@ o1, k)= 205 (65G) [ diy [ dhaG () Aaler + k)G (ma+ ko), (210)
GE(k) = SBHR)BH (—ky)H(~k3)é(k — ky £ k2), (2.12)
i, =%+ (k- k)/2, (2.13)

the summation notation is defined in (1.6.20) and the asterisk denotes the complex conju-

gate. The step function H(k) is defined by (Butkov 1968)
Hk)=11if k>0; HKk)=1/2 if k=0; H(k)=01if k<0, (2.14)

and 6(k) is the delta function (Lighthill 1960; Butkov 1968).



2.3. The third-order equations for the oblique-mode velocity jump

In order to obtain the velocity jump across the critical layer for the oblique modes, we need
to solve the equations (1.7.22) - (1.7.30) (but only the second part which involves VI(ZZJ[, £,m])
with the boundary conditions (1.7.34).

The linear growth term in the oblique-mode amplitude equation can be obtained by

solving (1.7.22),

F{VED Y (3,k) = 4ina P H(-R)A, (2 + K), (2.15)

and the linear velocity jump becomes, by putting k = 0 (see (2.2)),

1,1;mm 1somm

L) \ = * yeL ina z
f{V(S ) }(:z:,k =0) [—_— /_oo V1(3 ) dr]] = 217raﬁZIAJ(z). (2.16)

Using (2.5) and (1.7.13) we can show that the solution of (I.7.23) becomes

15,8nm

F (Vi) i} (8,5) = —dr(cos? ) [~ dkeX 2R B (B)B(z + k — F) A7, (& + k- 2B),
' (2.17)

and the velocity jump for the parametric-resonance term is

1,1;3,4nn

f{v(3a) }(5;,k = 0) = —4n(cos? 8) /_r dz1€5 (C1;0)¢2Be(21)A;_ (221 — ). (2.18)

The nonlinear part of the oblique-mode velocity jump is obtained by solving (1.7.24)

to (1.7.30). It is easy to show from (I.7.24) and (I.7.29) that

FIi.}@k=0=F{V,.} @k=0)=0. (2.19)

1,1;mm 1,1;5,8mm

The solution of (I1.7.25) can be obtained by using (2.7) and (1.7.10),

T T
FE )@ k=0 =7 ¥ [ dor [ deak 04, (a0 Arm(en) (o1 + 22 - 2),
m:—1 & -0

(2.20)

10
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where
KG9 = £7 (013 0)G (2.21)

From (1.7.26) along with (2.5), (2.8) and (I1.7.11), we can show that

T 2
F{VED pn} (ER=0) =7 /_ _dn /_ ~ dzo KD A,_(21) Arym(z2) A% (21 + 22 — E)

+y3d), (2.22)
where
(3d) _ g ¢ s
K =& (G: )G [(Cl + ()G + zhs_/o d(s&5 (C3 ) (G + G2 — Cs)} ) (2.23)

- T zy 00 [ore]
pEd = _ / dzy / dz / dn / dksgy [Tem(z1, T2, ks) + Kem (21, 72, k3)] s (2.24)
gt = heeTIGERINE (¢ 0),% [(ks + 20) oy (@1, 1) + D (21,m)] (2.25)

with (2.6), (2.10) and (2.11). Integrating by parts and changing the order of integrations

using

T Ty T T
/ dey / dz = / dz, / dz1, (2.26)
) —0o —0 2

(2.24) can be rewritten as

. z T3
YD) = _arh, / dz, / dz [K 3D Arim (1) Ay-e(22) (a1 + 22 = £)
ble <] —-00

FEGD A, (e Avpm() An(a1 + 22 - 3)], (227)
where
ng) = gc((lvo, 0; 1) + gI(Ch 0, 0; 1), I(}";:) = gc(gl, (2, 0; ]_) + g;'(cl’ <‘2,0; 1)’ (2-28)

G - —n a
Ge(Car G5 (i 8) = /0 dCage {ad [Ca + 20+ 3(C = €]+ (1+ 224) GG}, (2.29)

11



¢ o+
gc:{t(Ca’ Cln Cc; EZ.) = 2hs dCSgc dC4 a'gz (EC) fd)fa + “"2 (C41 Ed)fc
¢} 0
1+ 236 - G- 00}, (2.30)

-2 {(%Cx +C2) G+ (§C2+C1) (¢2=€o)? +(C1+¢2—Cb) (G +2¢2—2¢p)¢a+ ((1 +2C2+§C3) Cf} (2.31)

ge=e
fe=C-C &HE=G+0+G, E=G+G-C, &=CG+G-G (232

The solutions of (1.7.27) and (1.7.28) can be given as, using (2.5), (2.9) and (1.7.14),

T T T <
FVSED @ k=0)=7 / dz, / dz, / dz3e™3/3¢) A (23)
T2 - - N
[Cagf;([]; 1)Ag-m(z2)As_ (22 + 23 — Z) + 2h, Lw dz4e"\((§+53)/3g‘?(€e; -1)

Arm(za)Ai_(za+24-3)],  (233)

where (3 = 22 — £3, {4 = 23 — T4, the minus superscript in G}F is for the (3e) component

and the plus one is for the (3f) component and we have put
G (Car 8) = 2h,e P BHEFR)/E (£ 62 4 1) (2.34)
Ee=GHe, &=G+G, &=é+2,, b=+ (2.35)
Using (2.26) and integrating by parts, (2.33) can be rewritten as

]_.{V(Se 31) } (2,k = 0) = 27rhs/ de/ 1 dzs [Kr(l3e,3f)Am($1)Al_m($2)
-0 -0

1,1;5,,mnn

A1+ 22— 8) + KD A (21) An(22) AL (31 + 22 - 7)], (2.36)
where

G & - 382 3 ¢
KRe30) = op, /0 des ]0 dCags [£F (Coi )G = Ga) (1 + 22Ea]) F £ (Go = Cas Q)]

(2.37)

12
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e e Cl N £ 3
KD = kD 1 [ dtag, [ata (1 4+ 2268]) F ] (2.38)
gg = e MGHGG (01 ) (Co3 G1)ET (G 261 + 3¢2), (2.39)

the (-) and (+) signs of (F) in (2.37) and (2.38) are for the (3e) and (3f) components,
respectively, and &, and &, are defined in (2.32).
We can write the velocity jump obtained from (I.7.30), along with (2.5), (2.8) and

(1.7.11), as

R) z i ~(3h o -
f{Vl(:iﬂmm’} (Z,k=0)=2rmh, /_w dz, /_oo d:z:ﬂ\} )AJ.;.g(zl)Am(rg)AHm(zl + iz, - %)

+VEh) (2.40)
where
L(3h) _ - @ A
Ky =& (Gs 42)/0 d(3&5 ({35 ¢1)G (6 - C3), (2.41)
n T 3 00 oo
p(3h) =/ dzl/ dx2/ dn/ dk3g;'IC;'m(z1,z2,k3), (2.42)

and K¢m and g are defined in (2.11) and (2.25). The above equation (2.42) can be rewritten

as, using (2.26) and integrating by parts,

N z z)
VER = _orh, / dz, / dz [K D Am(21)Appe(w2) Ay (21 + 72 - 7)
-0 -0

FE D Ayre(21) Am(22) A ym(31 + 32 - 2)], (243)

where

EBM = g5((,0,0,-1), K8 = GH¢, 6, 0;—1), (2.44)

and GJ is defined in (2.30).

13



2.4. Other third-order equations

In order to obtain the mutual-interaction term in the plane-wave amplitude equation, we
need to know the following solutions of the other third-order equations.
The solution of the first part of (1.7.23), along with (2.5) and (I.7.13), which satisfies

the boundary condition (I.7.34) becomes

F{WE) )} (3,k) = —2xs [Pﬁ%} (& + k) H(=k) - i(cos?6) / ” dke- LR (F)
T e k

By(z + k — k)4;_,(Z + k — 2k)] . (2.45)
Equation (I1.7.37) subject to (1.7.43) is solved with (2.5) and (1.7.13),

(WS V) (10) = Brteo) [ RN ) B

Liadnm

Bi(#p)A,—o(ds + k), (2.46)
where
&y =%+ (k—k)/3, (2.47)

and we have used the fact Péig,l = 0 which is obtained by matching the solution of (1.7.42)

with the outer solution.

2.5. The fourth-order equations for the plane-wave velocity jump

The velocity jump for the plane wave can be obtained by solving (1.7.44) to (1.7.51) with
the transverse boundary condition (I1.7.54). The velocity jumps which produce the linear
and mutual-interaction terms in the plane-wave amplitude equation will be presented. The
back-reacfion term in the plane-wave amplitude equation that is quartic in the oblique-mode

amplitudes (Wu 1995) will be considered in future.

14
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The linear velocity jump is obtained from (1.7.44),
F{uieh} (@ k= 0)[ / U(‘*OL},,dn] = 2ira\2) B,(Z). (2.48)

4b)

The mutual-interaction term is determined by considering the components, Ué‘o; b and

Uz(?od;g,en in (1.7.45) and Uéi,c;)ﬂ’mn in (1.7.49). The velocity jump by the U((f)J ¢n component

becomes, using (2.7), (1.7.10) and (1.7.13),

ol z -
2(4(??7 l'n} (j’k = 0) = 8w E / dl:l/ deK(4b)BJ_£($1)Ag+m($2)
mi—1Y 7% —oo

A:n(21‘1 + 5 — 22_,‘), (249)

where

K4 — 6—45\((1+62)Cfci3’ (2.50)
and (1.6.20) is used. With (2.7), (1.7.10) and (1.7.13) it is easy to show that
d _
F{Ui§) i} @k =0)=0. (2.51)

The jump by the Uz( <)

Opt.mn COmponent, obtained using (2.5), (2.17), (2.45), (2.46), (1.7.31)

and (1.7.41), can be written as
c B T T3 N B
F{ULS) tmn} Bk =0) = 47 / dzy / dz, K9 A,_4(21) B(22) A% (21 + 225 — 28)
) —o0

+211%) + 1149, (2.52)

where

K§4C) — e—:\[4Cl(Cl+C2)2+2C§/3]CI(Cl + C2)£l, (2.53)

k4 T z < q o . N
u(4c = %th/ d$1/ ] dzzf ’ dwse"\(uC?’LSE?H?+2<g)/9€1(3 [1 + ¢3(26; - Cl)fi_z]
—00 —00 -0
B (22)Arom(23) A} (222 + 23 — 28), (2.54)
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z]}?;) = 8rh, /-'L' dz, /I] iz, /1‘1 dm3e—:\(4(§+(g_£?+2éi)/3ékcl [1 _ (3(1 + 242)5:51—2]
A,_(22) B (23) A%, _y(22 + 223 — 22), (2.55)
£=3G+G, &G=6+20, &=&-CG, =20+, (2.56)

along with (3 = z2 — z3. Using (2.26) and integrating by parts, (2.54) and (2.55) can be

rewritten as

- T z
04 = 4rh, / dz / ' 4oy KB (1) Arom(22) A5 (201 + 22 — 23),  (2.57)
-0 —-C0

4 Z z o c * —
{17 = arh, / doy [ dog [K{39,Bn(1)Ay-ew2) A5y _o(221 + 23 - 28)

+K % A2(21) Br(22) Ao g(21 + 202 — 23)|,  (2.58)
where

Eff) = 670,663, 1,0, Kff = (GG 0L 1,1),  K{fh = 6F(G,0,031,3,2),
(2.59)
GE (Car Gor s ,5,2) = (2/2)e EATH-CDFR+Q (¢, 4 ) [(1/8)(3¢: +25¢2)
+ [ dgsexp {£(283/3) (66 7 360G + 2062 7 (3/@)is] } & - (2/8) (26 + )
[14+ 383G+ 26 - G +4¢)(20 - 26+ G+ G)] }] . (2.60)

and £, and & are defined in (2.32) and (2.56).

3. Amplitude equations

The non-equilibrium amplitude equations for the frequency-detuned resonant-triads
are derived by substituting the velocity jumps across the critical layer obtained in §2 into

the jump equations (1.7.55) and (1.7.56).
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By substituting (2.16), (2.18) - (2.20), (2.22), (2.36) and (2.40) along with (2.2) into
(1.7.55), we obtain the frequency-detuned amplitude equation for the oblique modes (see

also (4.2)),for —J <7< J,

1 . i % .o . _
(cos@ + Eos_B) [Aﬁ + {‘5 UxX = m0) — Kob} AJ] == /_oo dz1 K1 (Z,21)B,(z1)A5(221 — T)

3 J T Ty
—Zl-—(sec2 ) Z / dry / dzo [Ko(Z, 21, 22)A,(21)Ae(22) A7 (T1 + 22 — T)

+K3(Z,21,22)Ae(z1)A,(22) A} (21 + 22 — T)], (3.1)

where Z and ¥ are defined by (1.12). The frequency-detuned plane-wave amplitude equation
is similarly obtained by substituting (2.48), (2.49), (2.51) and (2.52) along with (2.2) into

(1.7.56), that is (see also (4.3)), for —J <3< J,

o 4 K fF = .o
Bz + {i(X — no) — K2} By = -= > / dﬂh/ dza [K4(Z,1,22)B;(21)Ae(72)
T p=_gJ-— —o0
Aj(2z1 + 72 - 2%) + K5(Z,z1,22)Ae(z1)B)(22) A7 (21 + 274 — 2%)]

+(back — reaction — term). (3.2)

The oblique-mode amplitude A, and the plane-wave amplitude B, are normalized by (1.13).
At the leading order, 7 (= ¢/(7,Y:) as defined by (I1.7.18)) becomes unity and 6 given by
(1.4) becomes 7 /3. The transverse-coordinate origin shift 7, can be chosen to be zero as in
(1.7.58). The analysis allows the value of J in (3.1) and (3.2) to be very large (as long as the
magnitude of Jx in (1.6) is O(1), see also §4). The upper and lower limits of the summations
could also be arbitrary (i.e. E‘{; 7, )- The amplitude equations (3.1) and (3.2) (also (4.2) and
(4.3)) are valid for any value of the local-growth-rate exponent r in the range 0 < r < 3.
The analysis can be extended to include higher-order effects in the amplitude equations

(8.1) and (3.2) with minor modifications in their coefficients, which may be required for
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good comparison with experiments (see Wundrow, Hultgren & Goldstein 1994 for excellent
comparison of the linear growth rate).
The kernel functions, K; for the parametric-resonance term, K, and K3 for the self-

interaction term and K4 and K5 for the mutual-interaction term, are given by

Kl = 6—25\(£—x1)3/3(a—: - (L‘l)z, . (33)

Ky = KC) —2r(sin0) [K 52 - K& - KD + KD, (3.4)
Ks= K - or(sin?6) [k - k) - k&N - kPP 1+ K {P], (3.5)
Ky = 2K + r(sin”9) (K9 + K{7)] (3.6)

Ks = K}“c) + 7(sin? O)Kgcl)b, (3.7)

where ) is defined by (1.12). The O(1)-viscosity kernel functions for the self-interaction and
mutual-interaction terms, which are obtained by substituting (2.21), (2.23), (2.28), (2.37),
(2.38), (2.41) and (2.44) into (3.4) and (3.5) and by substituting (2.50), (2.53) and (2.59)
into (3.6) and (3.7), respectively, are given Appendix A. The sum of K; in (A1) and K3 in
(A2) is the same as the self-interaction kernel function of the single—frequency (or single-
resonant-triad) interaction given in Wu et al. (1993). The last terms which involve (1(; in
(A1) and (A 2) appear with opposite signs in K, and K.

The oblique modes react back on the plane waves and the corresponding back-reaction
term is quartic in the oblique-mode amplitudes (Goldstein & Lee 1992; Wu 1992, 1995).
The kernel functions for the back-reaction term will be analyzed in future.

In the inviscid limit (X = 0), the kernel functions become

. Kl = (Lf - 331)2, (38)
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K, = (1 — 27 sin? 0) (z - 1), (3.9)

K3 = (1 ~ 27 sin? 0) (Z - z1)(Z — z2) [:i ~ 21 + 27(sin? 8)(z, — $2)] , (3.10)
K4=2(1—7'sin20) (% — 1), (3.11)
K5 = (1-rsin?8) (2 — 21)(2 - 22)(28 — 71 — 72)- (3.12)

The linear growth rates of the oblique and plane waves, o, and x24, are

Iy

Kob

___secd 2.9 o 3 1/2] N TENY
~ 4(1 + cos?8) [Ta1M+§(20 RTw) » Kd = Oy + 2 (6"RTA) T, (3.13)

[\

where the real constant & is a normalization parameter which can be chosen arbitrarily,
Ty is the total wall-shear stress (see (1.3.15) and (1.3.16)), 652]3, is defined by (1.12) and ¢
(= &/(7,C) as defined by (1.7.57)) is unity at the leading order. The last terms in (3.13) are
due to the viscous Stokes-layer effect. Their magnitude is O(c"/?) when the critical layer is
governed by the non-equilibrium dynamics, but it becomes O(1) in the viscous limit where
A=0(c").

When the upstream flow is composed of a system of resonant-triads of linear instability
waves (Goldstein & Lee 1992; Lee 1997a) the upstream boundary condition becomes, as in

(1.7.59),

A; — d,exp [(nob - %])‘()i:] , B, —byexp[(kag —1JX)Z] as T — —oo, (3.14)

where the complex initial amplitudes &, and b, are given by (1.7.60). In the later down-
stream stage of the critical-layer evolution, the upstream boundary condition for the non-
equilibrium amplitude equations in that local streamwise region is obtained by matching
with the solutions of the preceding critical layer stage (Wundrow et al. 1994; Goldstein

1994; Wu, Leib & Goldstein 1997; Lee 1997a). The amplitude equations (3.1) and (3.2) are
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valid for any value of the local-growth-rate exponent r (it was assumed that 0 < r < 3 in
Part 1).

The streamwise evolution of the instability waves is determined by solving the frequency-
detuned amplitude equations (3.1) and (3.2) along with the upstream conditions (3.14). The
numerical solutions of these amplitude equations will be given in §9. The frequency-detuned
self-interaction term is composed of two summations in this multi-resonant-triad-interaction
case. The wavenumber differences between the instability waves of the Oth and jth resonant-
triads (that are given by (1.5.21)) produce the terms that involve 7% in (3.1) and (3.2). By
putting J = 0, we can recover the previously obtained amplitude equations (Goldstein &
Lee 1992; Wu 1992, 1995; Wu et al. 1993; Lee 1997a). The nonlinear part of the amplitude
equations (3.1) and (3.2) includes only one mean-flow-dependent parameter .

In the later downstream stage of the non-equilibrium critical-layer evolution, the local-
growth-rate exponent r becomes smaller than in the upstream non-equilibrium stage. The
mean-boundary-layer flow develops on the long viscous length scale (z, given by (1.2.1)).
The boundary-layer thickness and the mean pressure gradient are nearly unchanged (within
the order of approximation) over the region where the nonlinear interaction, or a series of '
nonlinear interactions, takes place. If we let the local-growth-rate exponent be r, in the
(first) upstream non-equilibrium critical-layer stage, the Reynolds number, mean pressure

gradient and frequency detuning are scaled by, from (1.8), (1.3) and (1.7),

i = a3r°+4’\05 ©= aro_lﬁm X =0"Xo, (3.15)
Ra

where A,, i, and x, are O(1) (of course they could be smaller). In the downstream region

where the local value of r is smaller than r, (we have only used the first equation in (1.3)
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for the simplicity), A, 2 and x become
A=030N E=0 R, X =07 X (3.16)

Therefore, the viscosity, mean pressure gradient and frequency detuning become less im-
portant in the downstream non-equilibrium region where r < r, (Wundrow et al. 1994).
From (i.12), (3.13) and (3.16), we can show that the linear growth rates k. and K24
become negligibly small when r is smaller than 7, (where r, < 3). Therefore, in this
later non-equilibrium critical-layer stage, the instability wave amplitudes of the frequency-
detuned resonant-triads are determined by the integro-differential equations (3.1) and (3.2)

with the linear terms omitted and the kernel functions given by their inviscid limits.

4. Large frequency-detuning limit

If we put

A, = A,exp(is%Z), B, = B,exp(iyx2), (4.1)

the non-equilibrium amplitude equations (3.1) and (3.2) can be rewritten as

or 1N i (s N - _
[o{0]] + C—Os—e {AJI'; - (57]0 + Kob) AJ} = ; -/—oo dzlhlBJ(xl)A](le - ‘T)

. T J
1 z I = = =%

—(sec?6) / dz; / doy | (K2 + K3) A (2)A,(z) Al (31 + 22— D)+ 3 M| ,(4.2)
7 =0 J-oo =Tt

. T T _
BJ:E — (”70 + K?d) BJ = ——T_,/ dxl/ d372 [I\z;B_,(.’El)AJ(SBz)AJ(?.’L‘] + 2 — 21,’)
- _ - J )
+K5A]($1)BJ(1'2)AJ(231 + 229 — 2:1-3) + Z Mm] + i (1 — rsin? 9) (sec2 0)
=T,

T T T2 - = = =%
/ dz, / dz, / dza [Kod,(21)A,(22)A,(23) X (21 + 22 + 73 - 22) + 3 My, (4.3)
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where K| — K5 are given in the previous section and K is given as, in the inviscid limit
(see Wu 1995 for finite viscosity one),
Ke =21 (sin2 0) ¢Z [(1+ 2rsin? e) (G + )P+ (G + G+ G)] + (1-27sin?0) o

(26 + )2 (3¢ + 26 + Gs) = 27 (sin? 8) { B + (G + 02) (G + G+ G) (G = o) }] (44)

We have put (3 = z2 — z3 and {; and (; are defined in (2.3).
The multi-mode-coupling terms M, and M,, (M, is not derived in this paper), be-
tween the jth and fth resonant-triads, are given by
M, = e2X0=0E= g, 3 (1) Ay(22) Ay (21 + 22 — E)

+e%)_‘(J—z)(i_x"’)K;gZe(xﬂZJ(-TZ)ZZ(JJI + T2 — 3—’)7 (4'5)

My = éX0-0E-2) g B (2,)Ay(22)Ap (22, + 75 — 25)

+eX0-0E=22) g A,(21) B, (22) Ay (21 + 222 — 27), (4.6)

When |x(7 — £)] is large, we can show that, by integrating by parts in the inviscid case,

L Ty —927sin? 6) = T -
[t [ deaat, = BE A a) [ anl el + 0050 - O], (47

z Ty — rsin’h) = z =
[ton [ dmartn = 2T D bo) [ amlitel + OG- 1) (49)

The effects of the multi-mode-coupling terms, M; and M, in (4.2) and (4.3), become neg-
ligibly small when the frequency difference becomes very large (we assume similar behavior
for the M, term).

In the real flow, there are infinite instabilities whose frequencies and wavenumbers

are continuously varying. The individual critical layers are merged from the beginning
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(of nonlinear process). The truncated finite summation in (1.10), (3.1), (3.2), (4.2) and
. (4.3) is an approximation to the infinite series. The instability waves whose wavenumbers,
frequencies and linear growth rates can be scaled as in §1 are only included in the summation.
The amplitudes of the other linear modes (i.e. of very high/low frequencies) have been
assumed to be too small to play any major role in the nonlinear process. However, it is
reasonable to expect that the growth of these other modes will be eventually governed by
the frequency-detuned interaction in the downstream region where their nonlinear growth
rates become much larger than the linear growth rates (that are different from (3.13)).
The amplitude equations (4.2) and (4.3) (also (3.1) and (3.2)), that are obtained when the
magnitude of JX is of O(o") (see (1.6)), can still be used, along with (4.7) and (4.8), for

larger value of JX (but JX still smaller than O(1)).

5. The singular solution of the amplitude equation

The solutions of the amplitude equations (3.1) and (3.2) always develop a singularity
at a finite downstream position Z, as will be shown in §9 and was shown in Goldstein &
Lee (1992), Wu (1992) and Lee (1997a) for the single-resonant-triad interaction. Near the
singular point where the exponent r is smaller than in the upstream region, the linear terms
and the viscosity effect become of higher order as explained in the previous section. The
amplitudes are then determined by (3.1) and (3.2) with the inviscid kernel functions (3.8) -
(3.12) and with the linear terms neglected. The solutions to these equations can be written

as (Goldstein & Choi 1989; Goldstein & Lee 1992; Wu 1992), when z — Z,,

A =a,/(, - 1, B, =0z, - 2)* for j=-J,....J, (5.1)

23



where 9, is a real constant and @, and b, are complex constants.
By substituting (5.1) into the inviscid amplitude equations (with the linear terms omit-

ted), we can show that

1 \3+iy, ib, i(1— 2rsin?6) N |ae|?
(COSB + m) |C_l]|2 =7 (_1? Dp(’l,bj) 4T(C0$2 0) =, |(.-1112 Ds(¢]> wl)v (52)

. . J o502
4 +_2”'b’ = —ﬂ(l - rsin?6) Y I(fel D (%,,%¢) + (back — reaction — term),  (5.3)
|2,]? T == lay)?

where the integrals D,, Ds and D,, are given in Appendix B. The above equations can be
solved numerically to determine [a,|, |b,|, ¢, and the argument of 53/63. As in the single-
resonant-triad case (Goldstein & Lee 1992), (5.2) and (5.3) fix only the argument difference
arg(b,/a?) and leave the individual arguments arg(a,) and arg(b,) undetermined.

From (1.9) and (1.10), we can show that the streamwise velocities of the plane and
oblique modes, in the inviscid wall layer, become of the order of the base mean flow in the
downstream region where Z; — z is O(o").

From (5.1) along with (1.2) and (1.12), we can show that, as Z — Z;,

A, 24, 2(,-z) ' B, 2B, ° 2(3s — 1)
’ (5.4)

Near the singular point, ; — Z becomes small so that we can put
Zs—ZT=0"(%;— %), (5.5)

where the magnitude of £, — 2 is of O(1). If the local growth rates are expressed as
A, /A, = O(c™) and B, /B, = O(c™*1), then it follows from (5.4) and (5.5) that the
local value # is given by

F=r—n, (5.6)
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which shows that the local-growth-rate exponent 7 becomes smaller as the distance z, —
becomes shorter.

Since the critical-layer thickness in the non-equilibrium analysis is of the same order as
the growth rate, the critical layer becomes thicker as the singular point is approached. The
thicker critical layer leads to a wider range of instability-wave frequencies over which the
frequency-detuned nonlinear interaction can occur (see (1.6)). All instability waves whose
scaled frequency differences are nearly O(1) can nonlinearly interact right before the scalings
of this analysis break down, which occurs at the streamwise position where the critical layer
is as thick as the inviscid wall layer and the unscaled distance from the singular point is of

the order of the wavelength scale (Goldstein & Lee 1992; Wu et al. 1997).

6. Viscous-limit quasi-equilibrium amplitude equation

The quasi-equilibrium amplitude equations for the multi—;esonant—tria.d interaction will
be obtained by taking the viscous limit (Wu et al. 1993) of the finite-viscosity amplitude
equations (3.1) and (3.2). Mankbadi, Wu & Lee (1993) and Wu (1993) derived the quasi-
equilibrium amplitude equations for the single-resonant-triad interaction by considering the
Tollmien-Schlichting waves in the upper-branch-scaling regime in the Blasius and favorable-
pressure-gradient boundary layers, respectively.

In the viscous limit as X — oo, the kernel K; given by (3.3) becomes highly concen-
trated around Z = z; and the parametric-resonance term N, in the oblique-mode amplitude

equation (3.1) becomes (Goldstein & Lee 1993)

Ny = =< B,()43(2). (6.1)

25



The viscous limit of the frequency-detuned self-interaction terms shows that the leading-
order terms are produced by the second double-integral term (whose kernel function is K3)
in (3.1). Following Wu et al. (1993), we can show that the viscous limit of the integral

which involves the second term 2k, focz d¢3(...) in (A 2) becomes

i

/3 J z
- sxars(tan’0) ( % )1 r(%)zgj Ae(E) /_ _dnd (o) i), (6.2)

and the viscous limit of the integral which involves the fourth term F[ ({3, (2, (3]0,(2) in

(A 2) becomes

'T . 1 1/3 J I
st osin? ) (1) T(H) ¥ 4e@) [ dmA e i) (6.3)
=—J —o0

where I'(1/3) = 2.6789 is the Gamma function. The above two terms in K 3 are originated
from K§3d), K}?‘,f), K}ah) and ng) given by (2.23), (2.28), (2.41) and (2.44). The nonlinear
interactions of the Uéi); e VO(ZZ) ,¢ and Wé?';,) ,,¢ components, as given by (1.7.26) and (1.7.30),
are responsible for the velocity jumps of the (3d) and (3k) components in (2.22) and (2.40)
(Wu et al. 1993). This is consistent with the results of the quasi-equilibrium critical-layer
analyses by Mankbadi et al. (1993) and Wu (1993) who showed that the spanwise-periodic
mean-flow distortion is responsible for the velocity jump across the diffusion layer. The
magnitude of the viscous limits of the integrals which involve the other terms of K3 in

(A2) and the kernel K, in (A1) are all of O(A~%/3) or smaller (Wu et al. 1993). The

frequency-detuned self-interaction term N, becomes as A — oo, from (6.2) and (6.3),
i -2 2 1\ 1S z
N.=-53i75 (1 - 27sin?6) (tan?6) (ﬁ> r(g)lgj Ad(2) /_ _dzAy(2) Ay (2).
(6.4)

Similarly, we can show that the mutual-interaction term N,, in the plane-wave ampli-
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tude equation (3.2) becomes in the viscous limit,

4i SN
N = =550 2. BA)IALDI, (6.5)

where C,, is a real constant that can be obtained by integrating the kernel functions K4
and K given by (A 3) and (A4) with X = 1 for the exponential terms and with F that is

redefined as not to include the last term A({; — ¢3)(...)(...) in (A7),
z E 31 —_ -
Cn :/ dz1/ do [Ku(Z,21, 21k = LLFE) + Ks(Z,21,2alh = LFF)|. (6.6)
-0 ~00

We can assume, from the back-reaction term in the single-resonant-triad case given by

Wu (1995), that the viscous limit of the back-reaction term N is
Ny =0 (1/3%), (6.7)

with N larger than 5/3, which has been indirectly proved by the quasi-equilibrium analyses
of Mankbadi et al. (1993) and Wu (1993).
With (6.1), (6.4), (6.5) and (6.7), the amplitude equations (3.1) and (3.2) become in

the limit as X — oo,

(cosO + %@) [A_,f + (%])Z - Kob) AJ] =N, + N, (6.8)

Bz + (igx — k2¢) B, = 0, (6.9)

where K0, and ka4 are given by (3.13) and we have put 7, = 0 (see (1.7.58)).

If we rescale the viscosity parameter and the amplitudes as in Lee (1997a),

A=0"), A,=0%74, B, =04, (6.10)
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the above equations (6.8) and (6.9) can be rewritten as (see also (6.17) and (6.18)), for

] = _J7 ARRE) J7
1 . oo . i oa e
(cos@ + m) [AJ_.; + (%]x - nob) AJ] = mBJ(x)AJ(x)
i g [ 113 1 o
Y (1 — 275sin? 0) (tan® @) (E) I'(3) g; z)/ dzlAJ(zl)AZ(zl), (6.11)
By + (9% — R2a) B, = 0, (6.12)
with
. sec B 2 (2) 1/2 .l @y 7. \1/2
Rob = 4(1 + cos20) [ mt§€ (2 KTw ) ] v K= ooyt g (Krw)\) ,  (6.13)

where the normalization parameter A& can be chosen arbitrarily, 7 and £ (as defined by
(1.7.18) and (1.7.57)) are equal to one, ¥ and a( ) are given by (1.12) and 7, is the total
wall-shear stress (see (1.3.15) and (I.3.16)). The linear growth rates R, and Roy were
obtained by substituting (6.10) into (3.13). As we expected, the viscous Stokes-layer effect
becomes O(1) in the viscous-limit linear growth rates.

The streamwise evolution of a system of frequency-detuned resonant-triads that are
composed of the Tollmien-Schlichting waves is determined by the quasi-equilibrium ampl-
tude equations (6.11) and (6.12). The value of the exponent 7 is 3 for the Blasius boundary
layer and 1 for the favorable-pressure-gradient boundary layer. These amplitude-equations
(6.11) and (6.12) can also be directly derived from the frequency-detuned quasi-equilibrium
critical-layer analysis (Mankbadi et al. 1993; Wu 1993). The quasi-equilibrium critical-layer
scaling can be obtained by rescaling the non-equilibrium scaling given in §1 using (6.10)
(see table 1 of Lee 1997a). The equations (6.11) and (6.12) (also (6.17) and (6.18)) for the
frequency-detuned multi-resonant-triads reduce to the amplitude equations of Mankbadi et

al. (1993) and Wu (1993) if we put J = 0.
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The plane waves grow linearly, i.e.

B, =b,exp[(Rza — is%) 7], (6.14)

in the entire quasi-equilibrium region. The streamwise evolution of AJ can be obtained by

solving (6.11) with the linear upstream condition

~

A, — a;exp [(nob - %]}2)'] (6.15)

The complex constants @, and 31 are given by the equations similar to (I.7.60). The results
of the numerical computations are presented in §8.

The growth of the frequency-detuned Tollmien-Schlichting waves in the upper-branch-
scaling regime is governed by the quasi-equilibrium amplitude equations (6.11) and (6.12).
However, this initial quasi-equilibrium stage will be eventually followed by the non-equilibrium
critical-layer stage where the amplitudes are determined by the integro-differential equations
(3.1) and (3.2) (Goldstein 1994; Wu et al. 1997; Lee 1997a).

If we put

~ -

A= 4, exp($IXZ), B, = BJ exp(ijx%), (6.16)

the equations (6.11) and (6.12) can be rewritten as

1 ! s i 2, . %% _
(coso . 0) (Aﬁ - Ko,,AJ) —-B,(2)4,(2)
T

2;4/3 (1 - 2r sin? §) (tan? 9)(118)131*( )[ (@) [ dmild,enp + l__ZJ:“#Mq (6.17)
By — 2B, = 0, (6.18)

where
. = Ae(3) / daye3X0-0E-=) 0 V3 (7)), (6.19)
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As in §4, we can show that

A% ) _2
Mg = mAa(x)lAe(fC)lz + O([x(s - OI™"), (6.20)

in the large frequency-detuning limit (when |x(y — £)| is large).

7. Nonlinearly-generated low-frequency modes

Goldstein & Choi (1989), Goldstein & Lee (1992) and Wu (1992) showed that the
nonlinear interaction between oblique modes of the same frequency produces a spanwise-
periodic mean-flow distortion. However, the nonlinear interaction between the frequency-
detuned oblique modes generates low-frequency modes in addition to the spanwise-periodic
mean-flow distortion. The frequencies of these nonlinearly-generated modes are equal to
the frequency differences between the primary oblique modes, therefore, they are very low

(of O(cf“)). From (2.8) and (1.7.11) along with (2.2), we can show that
AU @ = [ 0B, in=—tar(sin?0) [ dnita(z - 2) Al A3(m), (1)
V2,48 = [7 VD, in = dinr(ain? ) [ doiHolz - e) Apee)Aim),  (72)
AW, = /_ Z W, dn=0, (7.3)

where

Ho(Z) = /0 ? dze~PE /3 (z - )", (7.4)

9, % and ) are defined in (1.4) and (1.12), 7 is defined by (I.7.1) and 7 (given in (1.7.18)) is

equal to one. We can also show from (7.1) and (7.2) that
2 — . 0 2 _ i
AVo(,z);J,e(x) = —lg= [AU((),;,);J,Z(J))] . (7.5)
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The streamwise evolution of A, is determined by solving the frequency-detuned ampli-
tude equations (3.1) and (3.2), therefore, the velocity jumps (7.1) and (7.2) are determined
from the nonlinear critical-layer interaction. In order to match with these nonlinearly gen-
erated jumps, the low-frequency modes in the inviscid wall layer (where ¥ = oY) must be

written as, for YZY.,

= ( s
up o = o1 Z Z Re {Uo;Jz(Y a:)e”(xz_“/z)} cos[2Z + (3 + 20)z], (7.6)
j==2J &:-1
2J = (2)+ o _
Vo2 = gir+3 Z Z Re {iVo,z;Jyl(Y, :E)e”(x”'tl/z)} cos[2Z + (7 + 20)z], (7.7)
==2J £:—1

along with similar forms for wg 2 and po 2, where t;(= 0"+?x5t) and z,(= o™t1V/3xaz/4) are
defined by (1.5.24), ¥ is defined by (1.12) and }_,._, denotes ZZ_;‘SX—(J "? J—j) 35 Was given in
(1.6.20). The spanwise velocity w2 and the pressure po 2 are continuous across the critical
layer (see (7.3) and (1.7.16)). The magnitude of the streamwise component up 2 given by
(7.6) is as big as that of the primary oblique mode (see (1.5.30) where Uo 208 = [}c() ;’J 1€9%F).
The nonlinearly-generated low-frequency modes are functions of the slow time #; and the
magnitude of their frequencies is of O(c7%2).
= (2)£

2)+
The shape functions U0 2,52 and Vg 5., are discontinuous at the critical level Y = Y..

We can show from (1.6.5) — (1.6.7), (1.6.14) and (1.B2) that they have to satisfy the following

equations
= (2)+ = (2)-
Uot(Y =Y )= Uga, oY =Y ) = (ta.n 0)AUS . (7.8)
~( )+ ( )— k4aé
Vo 2,J,Z(Y Y ) - VO 12535 e(Y Yo)=- M (ta'n2 O)AVO(Z;)J £ (7-9)

where AU(E‘ZZ);J’E and AVO(,22);J,2 are given by (7.1) and (7.2), M is given by the phrase below

(1.13) (also in (1.7.5)) and & is the normalization parameter introduced in (1.12).
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In the upstream linear region where A, is given by (3.14), the critical-layer jump
AU(E?Q);J,Z in (7.1) becomes, as T — —oo,

2
AU, ¢ = ~ oy (sin? O)Ki [

s exp (20 - 907], (7.10)

=208 + 3% |  @,1e;
(22)1/3 (

111/3 P
(QA) 2Kop — §]X)
where Hi is the Airy function (Abramowitz & Stegun 1965, p.448). In the inviscid limit

where A = 0, (7.10) can be written as
. \-3 .
AUé'zz);M = —47r7'(sin2 6) (Zﬁob - %])2) G,4¢3; eXp [(2&05 - %])‘()f} . (7.11)

The transverse velocity jump AVO(;);J'I can be obtained by differentiating (7.10) and (7.11)
with respect to Z as shown by (7.5). The streamwise growth rates of AU(%);M and AVO(,ZZ); w
in the linear region are twice the linear growth rate of the oblique mode.

Near the singular point the viscous effect becomes small and the amplitude is given by

(5.1). We can show that the jump (7.1) becomes, when T — Z;,

AUD - 4rr(sin? 0)a,yea; » 1
ORI T (3+18Yy)(4 +1A8,)(5 +i¥y) (7, - 7)7HA

(7.12)
where we have put Ay, s = 1,40 — 5.

The numerical evaluation of the velocity jumps AUé’Zg;]’g and AVO(;); ¢ Will be presented
in §9 along with the numerical solutions of the amplitude equations.

The analysis in the critical layer only determines the critical-layer jumps of the stream-
wise and transverse velocities of the low-frequency (spanwise-periodic) modes. The com-
plete solutions of the nonlinearly-generated low-frequency modes can be obtained from the
multi-layer analysis (Wu 1993). When 7 = 3 and A defined by (1.8) is O(1) in the single-

resonant-triad-interaction case (Goldstein & Lee 1992), we need to consider the steady

spanwise-periodic (mean-flow-distortion) mode in the potential region where y = §/0o, the
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main boundary layer where y = O(1) and the viscous wall layer where y = o3Y in addi-
tion to the inviscid wall layer of O(c) and the critical layer of O(c*). The viscous wall
layer, which is thicker than the viscous Stokes layer for the oblique and plane waves of the
resonant-triad, is required in order to satisfy the wall boundary conditions. (The inviscid-
wall-layer solutions of the streamwise and spanwise components become singular at the
wall.) The three-dimensional boundary-layer equations in the viscous wall layer must be
solved with the no-slip boundary conditions at the wall and appropriate boundary condi-
tions on the upper edge of the layer in order to match with the solutions in the inviscid
wall layer. The transverse velocity on the upper edge of the viscous wall layer is determined
internally by the boundary-layer equations themselves and so its value can not be given as
a boundary condition as was done in Wu (1993). It is interesting to note that the stream-
wise and transverse velocity components in the inviscid wall layer, at leading order, become
equal to zero where Y > Y, but non-zero where Y < Y, (Lee 1997c). Thus, the nonlinear
interaction between oblique modes of the same frequency produces, at the leading order, the
spanwise-periodic mean-flow distortion only below the critical layer. The non-zero velocities
at Y = Y,_ will be determined by matching with the critical-layer jumps.

Since the critical-layer jump of the spanwise-periodic mean-flow distortion is deter-
mined from the solutions of the amplitude equations, which become singular at a finite
downstream position, the nonlinearly-generated spanwise-periodic mode becomes very large
near the singular point. When the value of the local-growth-rate exponent r becomes 9/10,
the streamwise velocity of the mean-flow distortion becomes as big as the base mean flow
near the wall. Therefore, the nonlinearly-generated spanwise-periodic mode and the base

mean flow start to interact nonlinearly in the nonlinear viscous wall layer whose thickness
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is of O(c37/1%) (Lee 1997c). This nonlinear viscous wall layer will be separated into two
layers (inviscid nonlinear layer and the viscous nonlinear layer) in the later downstream
region. The details of the evolution of this nonlinearly-generated mode will be presented in

a forthcoming paper.

8. Numerical solutions of the quasi-equilibrium amplitude equations

The quasi-equilibrium amplitude equations derived in §6 are solved numerically. The
frequency-detuned amplitude equations (6.11) and (6.12) determine the streamwise evolu-
tion of a system of frequency-detuned resonant-triads of the Tollmien-Schlichting waves.

A predictor-corrector method (see Gear 1971) is used to solve the oblique-mode ampli-
tude equation (6.11) subject to the upstream condition (6.15), along with the linear plane
wave given by (6.14). As in Lee (1997a), the Adams-Bashforth method was used for the
predictor step and the Adams-Moulton method was used for the corrector step. The typical
streamwise grid size is 0.002 and the streamwise integration starts about z = —20.

The numerical results in this section are obtained when A = 1, &o = 4 /5 and Rgq = 1.
The exact linear growth rates can be obtained from (6.13) for the specific problem. We
have also put # = /3 and 7 = 1 (see (1.4) and (1.7.18)). The initial amplitudes of the
plane and oblique modes are I;J = 1 and &, = 0.01exp(ir/4) for all 7. We have put the
argument of the initial oblique-mode amplitude to be 7/4 radian since it gives the most
effective parametric-resonance growth of the oblique modes as shown in Lee (1997a).

The general behavior of the solutions of the quasi-equilibrium amplitude equations in
this multi-resonant-triad case is the same as in the single-resonant-triad case (Mankbadi

et al. 1993; Wu 1993; Lee 1997a). The upstream linear growth of the oblique modes is
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enhanced due to the parametric-resonance effect when the plane wave amplitudes become
sufficiently large. The self-interaction between the frequency-detuned oblique modes causes
the oblique-mode amplitudes to become saturated, which then grow linearly with oscilla-
tions. Meanwhile, the plane wave continues to grow linearly in the entire region.

Figure 1 shows the results of the nonlinear interaction between two frequency-detuned
resonant-triads when 7 = 0 and 1. The solution of the single resonant-triad interaction is
plotted as the dotted curve. The linear oblique-mode amplitude is plotted as the dot-dashed
curve. Both plane-wave amplitudes By and B; grow linearly as given by (6.14). In figure
1a, the result when the frequency-detuning factor ¥ is equal to zero is plotted as the dashed
curve (Ap and A, are identical). The saturation amplitude is smaller than that of the single
resonant-triad interaction because of the doubled self-interaction effect when ¥ = 0. For
the non-zero values of ¥, the saturation amplitude of A is larger than that of A;. The
frequency of the Oth resonant-triad is lower than that of the 1st resonant-triad (see (1.6)).
When the frequency detuning is very large the multi-mode-coupling term M, in (6.17)
becomes very small. Thus, the resonant-triads grow almost independently of each other
and t}'le amplitudes Ag and A; become close to that of the single resona.nt-triaLd interaction
(within the range of the computation) as shown in figure 1d.

The numerical results of the three and five resonant-triad interactions are given in
figures 2 and 3, respectively. The straight lines for the plane wave amplitudes are not
plotted. The oblique-mode amplitude for the single resonant-triad interaction is plotted as
the dotted curve. Both figures 2 and 3 (and figure 1) show that the saturation amplitude
of the oblique mode of lower frequency (i.e. the one that has the lower value of j) is larger

than that of higher frequency.
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Since the effect of the spanwise-wavenumber (or propagation angle) detuning is not
included in this analysis, the oblique-mode amplitudes |fi][ are the same for all 7 in the
parametric-resonance region. The spanwise-wavenumber detuning can be included by re-
laxing the condition (I.5.16). The instability waves whose (scaled) spanwise-wavenumbers

are detuned by O(c¢") share the same critical layer and, thus, nonlinearly interact.

9. Numerical solutions of the non-equilibrium oblique-mode amplitude equa-

tions

The results of the numerical computations of the frequency-detuned oblique-mode am-
plitude equation (3.1) will be presented in this section. The critical-layer velocity jumps
(7.1) and (7.2) of the nonlinearly-generated low-frequency (spanwise-periodic) modes will
also be evaluated.

We have observed in the single-resonant-triad-interaction analyses by Goldstein & Lee
(1992) and Lee (1997a) that the self-interaction between oblique modes is mostly responsible
for the explosive growth of the amplitudes near the singular point. Therefore, we will
investigate the effect of the frequency-detuned self-interaction term first. There are, of
course, many important shear flows (i.e. compressible free shear layer, supersonic boundary
layer and others) where the the oblique mode is the most unstable wave and the self-
interaction is the dominant nonlinear interaction.

It is convenient to choose the normalization parameter &, which was introduced in

(1.12) (or (L1.7.1)), to be

., 2mY.a (2
R= e aﬁ;&n (9.1)
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and we have shown in (1.4) and (1.7.18) that
6=x/3, 7=1 (9.2)

If we put (1.7.58), (1.12), (9.1) and (9.2) along with B, = 0 into (3.1) and (3.13), the
frequency-detuned non-equilibrium amplitude equation of the oblique modes can be rewrit-

ten as, for —-J <3< J,

T
dzy / dea [Ka(2, 21, 22) A1) Ae(22) A} (21 + 72 — F)
o0 bl ]

J
Ae=(t-)a,-5Y [

=—J""

+K3(Z, 21, 22)Ae(21)Ay(22) A7 (21 + 22 — 7)), (9.3)
where the kernel functions K> and K3 are given by (3.9) and (3.10) in the inviscid limit.
The above equation (9.3) will be solved with the linear upstream condition (3.14), which

can be rewritten as
A, — @,exp [ - %]}2):2] as I — —oo. (9.4)

The effects of the magnitude of the initial amplitudes |&,| and the frequency-detuning
factor ¥ on the streamwise evolution of the amplitudes A, will be shown in the following
subsections when X = 0.

As in before (Goldstein & Lee 1992; Lee 1997a), the Adams-Moulton method (see
Gear 1971) is used to advance the solutions downstream from the prescribed upstream
linear state. The double-integral term on the right-hand side of (9.3) is computed using the
Newton and Cotes’ integration formula (see Kopal 1961). The numerical computation starts
about Z = —15 and the typical streamwise grid size is 0.01 (or 0.04 in the 51-pair-interaction

case).
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9.1. Inviscid two-, three- and five-pair interactions

The numerical solutions of (9.3) with (9.4) in the inviscid case (A = 0) are presented when
the instability waves are composed of the frequency-detuned two, three and five pairs of
oblique modes.

Figure 4 shows the results of nonlinear interaction between two pairs of oblique modes,
i.e. 7= 0 and 1, when the initial amplitudes are the same @o = @; = 1. The solution of the
single-pair interaction is also plotted as the dotted curve. When the frequency-detuning
factor y is equal to zero, the Oth and 1st amplitudes Ag and A; become identical as shown
in figure 4a. They become singular at earlier streamwise position than in the single-pair-
interaction case because of the doubled self-interaction effect. This solution when ¥ = 0 is
replotted as the dashed curve in figures 4b, 4c and 4d.

For the nonzero values of ¥, the initially same linear amplitudes Ag and A; start to
diverge when the effects of the frequency-detuned self-interaction become large as shown
in figures 4b and 4c for ¥ = 2 and 5, respectively. The multi-mode-coupling term M; in
(4.2) becomes O(1) and the frequency-detuned oblique pairs start to interact nonlinearly
when the local-growth-rate parameter ¢” becomes as large as the scaled Strouhal number
difference 3; — § (that is equal to (s; — s)/0?, see (1.5)). When ¥ = 2 shown in figure 4b,
the amplitudes Ap and A; become nonlinearly interactive at earlier streamwise position (or
at smaller growth rate) compared to the ¥ = 5 case (figure 4c). In figure 4c, the growth
rate of |4p] in the streamwise region where 1 < Z < 3.3 is enhanced mainly due to the
self-interaction between the oblique modes of the Oth pair. Similarly, the self-interaction

between the oblique modes of the 1st pair is responsible for the enhanced growth of |A4;|
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there. Since the frequency detuning is relatively large (¥ = 5), the coupled interaction
between two pairs occurs in the later downstream region, £ > 3.3, where the growth rates
become sufficiently large. Figures 4b and 4c show that |Ap| is larger than |A;| (except
1 < & < 3.3 in figure 4c). The frequency of the Oth pair is lower than that of the 1st pair
as given by (1.6).

When the frequency difference is very large, the coupled interaction between two oblique
pairs does not occur until the growth rates also become very large. The results of ¥ = 100,
given in figure 4d, show that |Ao| and |A;| grow almost identically as in the single-pair-
interaction case. The solid curve is not distinguishable from the dotted curve that is the
solution of the single-pair interaction.

It can be observed in figure 4 that both amplitudes become singular at the same
streamwise position for all values of ¥. The frequency difference between two pairs delays
the singularity.

The streamwise evolution of the oblique-mode amplitudes are plotted in figure 5 for
the three-pair interaction when 7 = 0, 1 and 2. The results are independent of the specific
value of ; of the center frequency, thus, j = —1, 0 and 1 instead of the current choice
will produce the same results as those in this figure. The initial amplitudes are the same,
Gp = @, = d; = 1, as in the two-pair-interaction case given in figure 4. The solution of the
single-pair interaction is plotted as the dotted curve and that of the three-pair interaction
with ¥ = 0 is plotted as the dashed curve. Similar to the results in figure 4, the coupled
interaction between frequency-detuned pairs occurs at smaller amplitude when ¥ = 2 (figure
5a) than in the ¥ = 5 case (figure 5b). When ¥ = 5 the singularity occurs at later streamwise

position compared to the case when ¥ = 2. The magnitude of the Oth amplitude |Ag| (of the
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lowest frequency) is the largest and that of the 2nd amplitude |A;| (of the highest frequency)
is the smallest in the frequency-detuned nonlinear-interaction region. The amplitude of the
lowest frequency, Ap, is likely to grow monotonically. The growth rate of |A;] in figure
5a becomes negative in a short period. It is interesting to observe in figure 5b that |Ao] is
almost identical to the single-pair solution, but [A4;| and 42| are smaller than that. In figure
5b, the singularity occurs at nearly the same position as that of the single-pair solution.

Figure 6 shows the results of the five-pair interaction when Gy = @, = @, = @3 = @4 = 1
with the results of the single-pair interaction (dotted curve) and the five-pair interaction
when ¥ = 0 (dashed curve). The amplitude of the Oth pair |Ag| is larger than the others,
however, the highest-frequency amplitude |A4| is not necessarily the smallest one (cf. figure
5). The amplitude |A4| still belongs to the group of smaller amplitude in the frequency-
detuned-interaction region. Note that when ¥ = 4, shown in figure 6b, all amplitudes are
smaller than the amplitude of the single-pair interaction and the singularity occurs even
at later streamwise position than in the single-pair case. The singular point moves closer
to that of the single-pair interaction for larger values of ¥ (the results are not shown).
The solutions of ten-pair interaction show the similar behavior although the results are not
presented.

Figure 7 shows the solutions of the two-pair interaction when the initial amplitude of
the lower frequency (Go = 1) is larger than that of the higher frequency (&; = 0.8 and
0.5 for figures 7a and 7b, respectively) and x = 2. The single-pair solutions are plotted
as the dotted curves for the respective initial amplitudes. (The dotted curve that has the
same initial value as the curve (i) in figure 7a, for example, is the single-pair solution with

do = 1 and the other dotted curve is the single-pair solution with the initial amplitude of
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0.8.) The frequency-detuned interaction between two pairs causes the growth rate of the
higher-frequency pair to become negative in a short period in both cases. The magnitude
of the Oth amplitude |Ao| is always larger than |A4;|, but both amplitudes become singular
at the same streamwise position.

The oblique-mode amplitudes are plotfed in figure 8 when &,(= 1) is larger than ag,
which is equal to 0.8 or 0.5, and ¥ = 2. Since the frequency-detuned self-infera.ction between
two pairs initially enhances the growth of the lower-frequency amplitude Ao and reduces
that of the higher-frequency amplitude A; (as in figure 4), | Ao| becomes larger than |A;]in
the later downstream region when dg = 0.8 and @; = 1 as shown in figure 8a.

The amplitudes Ag, A; and A of the three-pair interaction plotted in figure 9 show
that | Aol is always larger than | A,| although they have the same initial value (G = @, = 0.7
and 0.5; @; = 1). Figure 9a shows that the initially small Oth amplitude |Ag| becomes larger
than the 1st amplitude |A;| in the downstream region similar to the two-pair-interaction
solutions given in figure 8a.

Figure 10 shows the effect of x on the streamwise evolution of the amplitudes in the
three-pair-interaction case when dg = @, = 0.7 and @ = 1. The single-pair-interaction
solutions with the respective initial amplitudes are plotted as the dotted curves. The onset
of the singularity is delayed as x is increased from 0 to 3 as shown in figure 10a. When
X = 5, the singularity occurs at earlier streamwise position compared to the case when
X = 3. The amplitude ratios |Ag/A;1| and |A2/A;| remained the same when ¥ = 0. Figure
10e shows that the amplitude ratio of the higher-frequency mode [A2/A;]| is smaller in the

downstream region than the upstream value of 0.7 for all ¥ considered. The ratio |Ag/A:]

for the lower-frequency mode becomes larger than the upstream value when ¥ is equal
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to 1, 2 or 3, but it becomes smaller than 0.7 when ¥ = 5 as shown in figure 10c. The
amplitude |A;| of the higher-frequency pair exhibits more oscillatory behavior than |A4o| of

the lower-frequency pair as given in figures 10b and 10d.

9.2. Inviscid 51-pair interaction

The system of 51 frequency-detuned amplitude equations (9.3) where J = 25, ie. 7 =
-25,...,0,...,25, are numerically solved when XA = 0. As we mentioned before the specific
value of 7 of the center pair (0 in this case) does not affect the results. The initial amplitudes

dJ_ in (9.4) is given by the Gaussian function as
, = 35 exp [—(]—n1)2/50]+%5 for —25¢ <25 (9.5)
in the single-peak cases (figures 11 and 12). The second Gaussian function
i, = $Crexp [~ (7 — m2) /50| + 5, (9.6)

is superimposed on top of (9.5) for the initial amplitudes in the double-peak cases presented
in figures 13 to 15.

The Strouhal number difference between the jth and the Oth pairs of oblique modes is,
from (1.6) and (1.12),

§,— 8§ = 0" JXRTyS, (9.7)
where £ is given by (9.1).

Figure 11 shows the numerical solutions when ¥ is 0.2 and 7, in (9.5) is zero. The mag-
nitude of the amplitudes |4,| versus j at different streamwise positions are plotted in figure
11a. The streamwise evolution of the magnitude of the -20th, -10th, Oth, 10th and 20th
amplitudes, [A(_20)|, |A(-10)|> |4ol, |A410] and |Agol, respectively, is plotted in figure 11b.
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Figures 11a and 11b show that the amplitudes of the instability waves, especially those of
the lower-frequency modes (i.e. with smaller j), are greatly enhanced due to the frequency-
detuned self-interaction. The initially very small amplitudes of the -25th to -15th pairs
become large as the instability waves evolve downstream. The ratio [4(_15)/A (25|, which
is nearly equal to one in the upstream region, becomes large in the downstream region. The
initial symmetric shape of the Gaussian function becomes asymmetric and the maximum
amplitude occurs at lower frequency (at 7 = —2 when Z > 1) in the downstream region.
In the upstream positions, up to about Z = 0.5, the magnitude of the -20th amplitude is
nearly equal to that of the 20th pair as shown in figure 11b. However, at later downstream
positions (for example, at Z = 2.52 and 2.96), | A(_40)| becomes much larger than |Ay| as
well as [A(_y0)| becomes larger than |A;o] as given in figure 11a. The amplitude | Aso] is still
larger than the linear one at these two downstream positions (figure 11b). All amplitudes
become singular at the same finite downstream position.

The effect of larger frequency-detuning factor is shown in figure 12 when ¥ = 0.5 and
ny; = 0. Because of the larger detuning, the frequency-detuned nonlinear interaction occurs
at later downstream position in figure 12b compared to the previous ¥ = 0.2 case given in
figure 11b. Figure 12a shows that the frequency-detuned interactions enhance the growth
of the lower-frequency pairs more than that of the higher-frequency pairs similar to the
previous results. The frequency where the maximum amplitude occurs becomes lower as
the oblique modes evolve downstream. The amplitudes become singular at later downstream
position compared to the smaller frequency-detuning-factor case given in figure 11.

Figure 13 shows the evolution of the double-peak initial amplitudes when ¥ = 0.2,

ny = 5, ng = =5 and C; = 1. The amplitude IA(_5)| is equal to |As| in the upstream
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region, but the former becomes larger than the latter in the downstream region. The
amplitude of the -6th pair is the largest at Z = 2.8. Figure 14 shows the results when the
higher-frequency maximum of the initial amplitude, @s, is larger than the lower-frequency
one, ag, and X = 0.2, n; =5, ny = 0 and C; = 0.8. Although the O0th amplitude is smaller
than the 5th amplitude in the upstream region, |Ag| eventually becomes larger than |As|
in the later stage as was also observed in figure 8 in the two-pair interaction. Figure 15,
which are the numerical results when ¥ = 0.2, ny = 0, n, = 5 and Cy = 0.8, shows that
the initially small higher-frequency peak (at 3 = 5) becomes less and less noticeable as
the instability modes evolve downstream. The results in figures 13 to 15 also exhibit the
enhanced growth of the lower-frequency pairs.

The results of these frequency-detuned multi-pair interactions show that all instability
modes become singular at the same finite downstream position. However, as we all know,
the flow does not support extremely large instability waves. Near the singular point (where
zs — z = O(o™1)), the amplitudes of the instability modes become as large as the base
mean flow in the inviscid wall layer (see (1.5.30) and (5.1)). The next stage will be the
triple-deck stage as shown by Goldstein & Lee (1992) and Wu et al. (1997). The flow in
this stage is governed by the equations which are elliptic in the streamwise direction. The
flow may enter the triple-deck stage before we can fully observe the explosive growth of the
instability modes predicted by the frequency-detuned non-equilibrium amplitude equations
of this analysis. The explosive growth occurs in a very short streamwise distance as the

numerical results indicate.

44

R BN



9.3. Critical-layer jumps of the nonlinearly-generated low-frequency modes

When X = 0, the velocity jumps across the critical layer of the low-frequency modes, (7.1)

and (7.2) can be rewritten as
@ __3_ [F N2 .
AUO,2;J,£ = -7 dz1(Z — 1)  Ajre(21)A7(21), (9.8)

AVO(,ZQ);J,e = dir /_oo dz1(T — 21)Ase(21)A7(21), (9.9)

where we have used (9.2). The jumps AUé?}Ul and AVO(’Z;);M are obtained by integrating

(9.8) and (9.9) using the numerijcally calculated oblique-mode amplitudes A,.

Figure 16 shows the numerical results of the single-pair interaction when g = 1. The
nonlinear interaction between a pair of oblique modes of the same frequency produces the
steady spanwise-periodic mode. The oblique mode amplitude Ag that was plotted as the
dotted curve in figure 4 is replotted as the same dotted curve. The streamwise growth rates
of AUé,zz);o,o and AVo(,zz);o,o are twice that of the oblique mode in the linear upstream region as
given by (7.11). Both streamwise and transverse jumps of the spanwise-periodic mean-flow
distortion become singular at the same singular point of the oblique-mode amplitude.

The nonlinear interaction in the critical layer between three frequency-detuned pairs
of oblique modes produces nine low-frequency (spanwise-periodic) modes. The numerical
results of the three-pair interaction when @g = @; = @, = 1 are given in figure 17 for ¥ = 2
and in figure 18 for ¥ = 5. The streamwise evolution of the amplitudes was plotted in figure
5. If we put the subscripts j of A, to be 0, 1 and 2, we can show from (7.6) and (7.7) that
the subscripts (7,£) of the non-zero AUé?z);g,e and AVO(;);J,[ are (-2,2), (-1,1), (-1,2), (0,0),
(0,1), (0,2), (1,0), (1,1) and (2,0). Figures 17 and 18 show that ]AUé?Z);J’A and [AVO(;);LA

with larger value of |j| are smaller than those with smaller |7| in the linear upstream region
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as was predicted by (7.11). The mode with 7 = £ = 0 is steady and its critical-layer jump is
larger than the other components in most of the region. As in figure 5 the results in these

figures are independent of the specific value of j of the center frequency.

10. Concluding remarks

A system of resonant-triads can interact nonlinearly between themselves in the common
critical layer if their frequencies (of the fundamental plane waves) are different by a factor
whose magnitude is of the order of the growth rate multiplied by the wavenumber of the
instability waves. The long-wavelength small-growth-rate instability modes in boundary
layers with and without mean pressure gradient are analyzed using the generalized scaling
of Lee (1997a).

In this part of the study, the system of partial differential critical-layer equations along
with the jump equations given in §7 of Part 1 is solved analytically to obtain the frequency-
detuned amplitude equations. The amplitude equations are similar to those obtained by
Goldstein & Lee (1992) and Wu (1992) for the single resonant-triad interaction. However,
in the multi-resonant-triad-interaction case, the frequency-detuned self-interaction term in
the oblique-mode amplitude equation and the frequency-detuned mutual-interaction term
in the plane-wave amplitude equation are composed of 2(2J + 1) terms (see (3.1) and (3.2)).
The kernel functions for the self-interaction terms are divided into two parts.

When the scaled-Strouhal-number difference between resonant-triads is larger than the
local-growth-rate parameter ¢”, the multi-mode-coupling terms M;, M., and M; in (4.2)
and (4.3) become negligibly small (see (4.7) and (4.8)) and the instability waves of an

individual resonant-triad grow independently of the other resonant-triads.
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The effect of the self-interaction between frequency-detuned pairs of oblique modes
was investigated by solving the non-equilibrium oblique-mode amplitude equations in the
inviscid limit. As given in the previous section, the growth of the lower-frequency oblique
mode is more enhanced than that of the higher-frequency in most cases. It is shown that
all amplitudes become singular at the same finite downstream position regardless of their
initial values. The frequency-detuning effect delays the occurrence of the singularity. The
singularity in an appropriately frequency-detuned multi-pair interaction occurs even at later
downstream position than in the single-pair interaction although the sum of the initial
amplitudes in the former case is much larger than in the latter case.

Though the analysis was carried out with the non-equilibrium critical-layer scalings,
the frequency-detuned quasi-equilibrium amplitude equations can be obtained by taking
the viscous limit of the O(1)-viscosity non-equilibrium amplitude equations. The numerical
computation of the quasi-equilibrium equations shows that the saturation amplitude of the
oblique mode of lower frequency is larger than that of higher frequency. The frequency-
detuned resonant-triads of the Tollmien-Schlichting waves in the initial critical-layer stage
is governed by the quasi-equilibrium amplitude equations, however, the later downstream
stage will be eventually governed by the non-equilibrium dynamics as shown by Goldstein
(1994), Wu et al. (1997) and Lee (19972).

Corke & Gruber (1996) and Liu & Maslowe (1998) show that the resonant-triad theory
of Goldstein & Lee (1992) is in good agreement with their experimental and numerical
results in adverse-pressure-gradient boundary layers. Corke & Gruber (1996) show that
faster linear growth of the plane wave accelerates the parametric-resonance growth of the

subharmonic oblique modes and induces larger saturation amplitudes of the oblique modes
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compared to the Blasius case given in Corke & Mangano (1989). Using the parameters
in Corke & Gruber (1996), we can show that the parametric-resonance effect is already
much larger than the linear-growth effect (in the oblique-mode amplitude equation) at their
first measured streamwise position. Faster (than linear) growth of the oblique modes at the
beginning was observed in the experiments and also confirmed by the numerical simulations
of Liu & Maslowe (1998). |

The numerical solutions of the non-equilibrium amplitude equations show that the ex-
plosive growth of the instabilities occurs in a very short streamwise period near the singular
point. Therefore, in most flow conditions for the resonant-triad interaction, the explosive
growth may not be clearly distinguishable before the scalings of this analysis break down
as the experimental (Corke & Gruber 1996) and numerical (Liu & Maslowe 1998) results
indicate. However, the enhanced g;owth of the plane wave, especially in Figure 10b of Corke
& Gruber (1996), proves that the oblique modes are large enough to produce the mutual-
interaction and back-reaction effects on the plane wave, thus, there exists self-interaction
effect. The explosive growth is the downstream asymptotic behavior of the self-interaction
(or fully-coupled interaction) effect. In fact, as the finite-viscosity numerical solutions of Lee
(1997a) (for example, his Figures 3 and 4) show, the fully-coupled interaction initially, in a
very short period, reduces the growth rates of the oblique modes, which is more apparent
when the viscous effect is large. The self-interaction effect can also be identified by the
spanwise-periodic wall shear stress and the generation of the spanwise-periodic mean-flow
distortion and nonlinear (very) low-frequency modes. The saturation of amplitudes, shown
both experimentally (Corke & Gruber 1996) and numerically (Liu & Maslowe 1998), will

be governed by subsequent nonlinear dynamics but the frequency-detuned self-interaction
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between saturating/saturated oblique modes and neighboring frequencies (of small ampli-
tudes) may still be active there to accelerate the growth of the latter.

The present analysis is more focused on the frequency-detuned self-interaction and the
summation does not appear in the parametric-resonance term in the oblique-mode ampli-
tude equation (3.1). We can extend the analysis, by relaxing the condition (I.5.16), to
include the spanwise-wavenumber detuning. It can be shown that the parametric-resonance
interaction between a band of fundamental plane waves (w £ Awy) and a band of subhar-
monic oblique modes (w/2 & Aw;) can accelerate the growth of the oblique modes whose
frequencies are within w/2 + (Awys+ Aw;). The growth of a wide frequency range of oblique
modes will be enhanced by subsequent interactions, for example, between the plane waves
and the oblique modes of w/2 £+ (Awy + Aw,). Kachanov & Levchenko (1984) (also in the
review by Kachanov 1994) showed that the (subharmonic) resonance is very wide in the
frequency spectrum and it can amplify even (quasi-)subharmonic modes whose frequency
detuning is close to one half the subharmonic frequency.

In an incompressible boundary layer, the plane wave is the most unstable mode. How-
ever, three-dimensional modes of small propagation angles are more unstable than the plane
wave off the most unstable frequency (see (3.13)). Therefore, in a natural flow, the linear
upstream flow may be dominated by an oblique mode whose propagation angle is relatively
small. The resonant-triad analysis of this paper (also of Goldstein & Lee 1992, Wu 1992
and Lee 1997a) can be generalized for three (pairs of) oblique modes instead of the usual
fundamental plane wave and a pair of subharmonic oblique modes. The three (pairs of)
oblique modes, whose streamwise and spanwise wavenumbers are a,/2 and 3,, respectively,

share the same critical layer, provided (a,/2)? + 3? are the same for all : = 1, 2 and
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3. If we put the propagation angle of the first mode to be 6; (= tan~!(28;/e;)), where
0 < 6; < 7/6, the second and third ones must be 8, = 7/3 — 6, and 63 = 7/3 + 6, in order
for the resonance-interaction to occur. When #; is equal to zero, 8, and 6; become 7/3 and
the three-oblique-pair resonant-triad reduces to the traditional resonant-triad. The role of
the first oblique mode is similar to that of the plane wave. When the amplitude of the
first mode becomes O(c*"*1), the (generalized- )parametric-resonance interaction enhances
the growth of the second and third modes as in the subharmonic-resonance analysis of this
paper. The frequency difference between the second and third modes becomes larger as
the propagation angle of the first mode 6, is increased. (This phenomenon may be very
useful to prove the existence of the critical-layer dynamics in boundary layers and free shear
flows.) When there exist three pairs of oblique modes of different frequencies in a natural
flow, a clear A-shaped structure is hard to be observed as many unexcited flow-visualization
experiments report.

The (generalized-)parametric-resonance growth of the second and third oblique modes
allows the phase-locked interaction of Wu & Stewart (1996) to occur when their amplitudes
become O(o77/2t1). The phase-locked interaction can take place between the second (or
third) mode and any other lower-frequency oblique modes of the same phase speed. The
analysis of Wu & Stewart (1996) indicate that the higher-frequency mode (i.e. the 2nd or 3rd
mode) can accelerate the growth of the lower-frequency ones. This phase-locked interaction
occurs earlier than the self-interaction. Both in parametric-resonance and phase-locked
stages, the first mode grows linearly. When the second and third modes become sufficiently
large, i.e. O(c>*1), due to the continuous parametric-resonance interaction with the first

mode, the frequency-detuned self-interaction of this analysis becomes important and all
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oblique modes become singular at a finite downstream position.

It is shown in Appendix C that higher spanwise-harmonics (AU1(33) ), higher spanwise-
periodic mean-flow distortion (AU&) ) and nonlinear mean flow (AUég ), which do not exist
in the upstream region, are nonlinearly generated by the critical-layer interaction and they
grow very rapidly to become as large as the base mean flow in the inviscid wall layer at the
downstream position where the distance from the singularity Z, — Z is of O(¢”). The mean
flow jump across the critical layer was found by Haberman (1972). It is also possible to
show that the nonlinear interaction in the critical layer generates the critical-layer jumps of
all higher harmonics and they also become of O(c) very fast in the inviscid wall layer (cf.
Smith & Bodonyi 1982).

The present critical-layer analysis shows that (i) a band of (or bands of a couple of ) two-
dimensional (or small-propagation-angle oblique) modes, which dominate the upstream re-
gion of a boundary-layer-transition process especially when environmental disturbances are
relatively small, (ii) bands of oblique modes, whose growth is accelerated by subharmonic-
parametric-resonance, generalized-parametric-resonance and phase-locked interactions, (iii)
nonlinearly-generated low-frequency modes, which includes the spanwise-periodic mean-flow
distortion, (iv) nonlinear mean flow and (v) bands of higher harmonics become very large
as the instabilities evolve downstream. The growth of these linear and nonlinear modes are
still governed by the parabolic-type (in the streamwise direction) equations of this analysis.
The frequency-detuning interaction allows wider bands of modes to interact.

Near the singularity where Z,—Z is of O(¢7), or z,—z is of O(o 1), all these instabilities
become as large as the base mean flow in the inviscid wall layer. The flow in the inviscid

wall Jayer will then be fully nonlinear. Goldstein & Lee (1992) and Wu et al. {1997) showed
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that the flow in the next stage will be governed by the unsteady, inviscid, three-dimensional

triple-deck equations.

This work was supported by the Acoustics Branch at NASA Lewis Research Center,

contract number NAS3-98008.

Appendix A. The O(1)-viscosity kernel functions K,, K3, K4 and K5

Q1 -
K, = e-X(2<1/3+c2)(f [Cii _ 2h5/0 dés {e-w\[((h+2(2/3)C§+((1+Cz)('2(2+43)(3] (8a(C1, (25 G3)

+}-¢;(<17C27 CSIO’ 0)) - §C(C17 C% C3) (gb(Cla CZ, C3) + f;((hC'Z"C\'S[Clv O) + CICZ)}] H (A 1)

< ¢
E; = e Ea/srad [(cl + ) 2h, [ dGaem NG (¢ 4+ 20, - 265)
0

G 2
—th/O dgs {640(3 (9a(C15€2,€3) + Fi (€1, €2, G310, (2)) — 6(C1, G20 C3) (d(Ca, C2, G3)

+F (61,62, G1¢1, 0) + 20 — G12) Y], (A2)

Ky = emNOra (o) 4 h, e X O+6lAG {46 (36 +26) (9 + 502)

+30F (G162, Gal0, €2, G5 3) +2(2G + ) FH (G, 60 Gl G, D], (A3)

K5 = e~ @/AN@a+ar 20 (90, 4 ¢, (G (G4 G2) + R {36 (26 + G2)

+2F (1, G2, o161, 0,0, 1)} (A4)
where we have put, as in (2.3),

G=F-21, (2=2,-T9, hy=rsin’0, (A5)
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with

(3¢ -
fa,i(Cla (2, (3Ca, Cb) = 4hs/ sToe dc4e:|:/\(2(4/3+C1+Cz—(a-(b)Cf (Cb + (3~ C4)
4]

{1 +20 (G- G) (G + B+ G- Cb)‘z] ) (A6)

FE(G, Car (alCar Goo (s &) = /0 “ dcseizai/s[(csmcl)cg+2<2c2¢(3/a)(2<1+<2)<§<a] (1 - (3
A IR~ 0426~ G0 -2+ G+ Q)] (A7)
de = ((1 = G3)(G1 + 22 + 3G3), | (A8)
= 220G (G - G) (G + G+ () (A9)

ge=exp [F3{(G+26/3) G + 26 +3G + 46/ G +2(G+ G) GG . (AL0)

Appendix B. The integrals D,, D, and D,, in (5.2) and (5.3)

D, = /1 dzy (21 — 1) (21) 45 (22, — 1)73H% (B1)

Ds = / de/ d(L‘g (xl - 1)($1 + Iy — 1)_3+i¢l [(1:1 - 1)2 (zl)—s—i% (:Ez)_:;_iw‘
1 z

1

+(z2 - 1) {wl -1- QT(sin2 0)(z1 — 1‘2)} (zl)_s_iw‘ (:cg)_s_iw’] ,(B2)

D, = / dz:1/ dzo(z1 — 1) [2 (z1 — 1)2 (zl)"‘i—%‘” (zg)_3—i‘l" (2z1 4+ 22— 2)_3+i"["
1 3]

F(z2 = 1) (21 + 22 — 2) (21) 37V (25) ™Y1 (2 + 22, — 2)—3“’“] . (B3)

Appendix C. Critical-layer jumps of higher-order nonlinear modes

Nonlinear critical-layer equation (I.6.3) indicates that the third-order nonlinear mode

Re ﬁl(33) el(X/2£32) appears in the expansion (1.6.15) and the fourth-order ones Re U}g?o) and
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Re(;’é;)ei“z , among many others, also appear in (1.6.16) (also in equation (6.12) in Lee
1997a). Here we only consider the single-resonant-triad interaction case (J = ¥ = 0 and
7o = 0) and A, will be replaced by A.

From the critical-layer analysis, we can show that

T T
AUS(E) = / U dn = / dz; / de3A(z1)A(z3) A (21 + 3 — £)

e MGC/HG) [2(26; + G) + (sin? B)(....) + (sin* O)).. ). (€

AUd(z) = / U dn=m /_ ; de;|A(e1)[ [1 - (sin? 9)e23G/3] (C2)
(4)( )_/ U(4) 24N = —167r/j da:I/_n d.ar:g‘/j2 d:c3/_z3 dz4
(47 (22) A(23) A(24) A" (23 + 2 = 22)(GE +.. ) +.. ], (C3)

GH a\1/2 _ o
v =2 (2”—“) 0eXol2, yld = 58 Ul = kr,em208,  (C4)

RTw¥ \ Tw€ o 27272 T2
H = 2rY.a/(kr,c)?, (C5)
(3 = 22 — z3, (C6)

¢1 and ¢ are defined in (2.3) and M is defined in (1.7.5).

The nonlinear modes o4 +Re U7 (3) eX/2cos3Z, a5 10, (4) and 0% +17§* )cos 4Z should
be included in the streamwise velocity expansion (1.10) in order to match with these critical-
layer jumps. Near the singular point, the amplitude A is given by (5.1). Thus, these higher-
order velocities become as large as the base mean flow, which is O(o), in the inviscid wall

layer when z, — % is O(d’).
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-2 -1 o] 1 2 3 4

Fig. 1 Quasi-equilibrium interaction between two resonant-triads: In|Ap|, In|A;| and In|B,| =

In|By| vs. Z, curves (i), (i) and (iii) respectively, when &, = @, = 0.01 exp(in/4), by = b; = 1,

X =1, kop = 4/5, kzg = 1 and (a) x = 5, (b) ¥x = 10, (¢) x = 50 and (d) ¥ = 500

(dotted, single resonant-triad interaction; dashed, two resonant-triad interaction with ¥ = 0;

dot-dashed, linear oblique-mode amplitude).

59



Fig. 1 (c) and (d). See previous page for captions.
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Fig. 2 Quasi-equilibrium interaction between three resonant-triads: In|A|, In|A4;| and In|A;]
vs. &, curves (i), (ii) and (iil) respectively, when ¥ = 5, 8o = 4; = as = 0.0lexp(in/4),

bo=by=by=1,A=1, &op = 4/5 and 24 = 1 (dotted, single resonant-triad interaction)
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x|

Fig. 3 Quasi-equilibrium interaction between five resonant-triads: In|A|, In|4,]| , In]A;], In|As]
and In|A4] vs. Z, curves (i) — (v) respectively, when ¥ = 5, & = @, = 8 = a3 = G4 =
0.01 exp(im/4), bo = by = by = b3 = by = 1, A= 1, Rop = 4/5 and Ra2q = 1 (dotted, single

resonant-triad interaction)
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Fig. 4 Non-equilibrium interaction between two pairs of oblique modes: In|Ap| and In |A4,]| vs. Z,
curves (i) and (ii) respectively, when G =d, =1,A=0and (a) x=0,(b) x=2,(c) x =5

and (d) ¥ = 100 (dotted, single-pair interaction; dashed, two-pair interaction with ¥ = 0).
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Fig. 4 (c) and (d). See previous page for captions.
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Fig. 5 Non-equilibrium interaction between three pairs of oblique modes: In|Ag|, In|A;]| and In|A,|

vs. I, curves (i), (i) and (iii) respectively, when @ =&, =d; =1, A=0 and (a) ¥ = 2 and

(b) X = 5 (dotted, single-pair interaction; dashed, three-pair interaction with x = 0).
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Fig. 6 Non-equilibrium interaction between five pairs of oblique modes: In|Aq|, In|A4;], In|42],
In|A3] and In | A4} vs. Z, curves (i) - (v) respectively, when dg = 3, = d; = a3 =ad4 =1, A =0

and (a) ¥ = 2 and (b) x = 4 (dotted, single-pair interaction; dashed, five-pair interaction with

< =0).
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Fig. 7 Non-equilibrium interaction between two pairs of oblique modes: In |Ag| and In |4,| vs. Z,
curves (i) and (ii) respectively, when ¥ =2, A = 0, & = 1 and (a) &; = 0.8 and (b) @, = 0.5

(dotted, single-pair interaction).
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Fig. 8 Non-equilibrium interaction between two pairs of oblique modes: In|A4o| and In [4,] vs. Z,
curves (i) and (ii) respectively, when ¥ =2, A =0, 4, = 1 and (a) & = 0.8 and (b) G, = 0.5

(dotted, single-pair interaction).
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Fig. 9 Non-equilibrium interaction between three pairs of oblique modes: In|Ayp|, In |A;| and In |A,|
vs. Z, curves (i), (ii) and (iii) respectively, when ¥ = 2, X = 0, @, = 1 and (a) @ = @2 =0.7

and (b) @y = @2 = 0.5 (dotted, single-pair interaction).
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Fig. 10 Non-equilibrium interaction between three pairs of oblique modes: (a) In|4;], (b) In |Ao],

(c) [Ao/Ay], (d) In|Az| and (e) |A2/A1] vs. T when G, =1,8=8=07, A=0and ¥ =0,

1, 2, 3 and 5, curves (i) — (v) respectively (dotted, single-pair interaction).
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Fig. 10 (b) and (c). See previous page for captions.
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Fig. 10 (d) and (e). See p.70 for captions.
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Fig. 11 Non-equilibrium interaction between 51 pairs of oblique modes: (a)In|A,| vs. jat Z = -2,

-1,0, 1, 1.52, 2, 2.52 and 2.96, curves (i) - (viii) respectively, and (b) In|A(_20)|, In|A(_10)],

In|Ao|, In]A;o| and In |Az| vs. Z, curves (i) - (v), when ¥ = 0.2, n; =0 and A = 0.
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Fig. 12 Non-equilibrium interaction between 51 pairs of oblique modes: (a) In |4,| vs. 7 at £ = —2,
-1,0,1, 1.52, 2, 2.52, 3 and 3.32, curves (i) ~ (ix) respectively, and (b) In [A¢=20y, In|A(_10)],

In|Aol, In|Ajo] and In|Az] vs. Z, curves (i) - (v), when ¥ = 0.5, n; = 0 and X = 0.
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Fig. 13 Non-equilibrium interaction between 51 pairs of oblique modes: (a)In [4,] vs. jat Z = -2,

-1,0,1,1.52, 2, 2.52 and 2.8, curves (i) - (viii), and (b) In |A(_10)|, In [A(_5)|, In [Ae], In | As]

and In|Aio] vs. %, curves (i) - (v), when ¥ = 0.2, n; =5, ny =—5, C2 =1 and A = 0.
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Fig. 14 Non-equilibrium interaction between 51 pairs of oblique modes: In|4,| vs. j at z = -2

-1,0,1, 1.52, 2, 2.52 and 2.92, curves (i) - (viii) respectively, when ¥ = 0.2, n; =5, np =0,
C;=08and A=0.
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Fig. 15 Non-equilibrium interaction between 51 pairs of oblique modes: In|A4,| vs. 7 at 2 = -2,

—1,0,1, 1.52, 2, 2.52 and 2.88, curves (i) — (viii) respectively, when ¥ = 0.2, n; = 0, ny =5,
Co=0.8and X =0.
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Fig. 16 Non-equilibrium interaction between single pair of oblique modes: In ]AUé?z);o,o‘ and

In lAvo(,zz);o,o| vs. Z, curves (i) and (ii) respectively, when Go = 1 and A = 0. (dotted, In|Ao]).
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Fig. 17 Non-equilibrium interaction between three pairs of oblique modes: (a) ln|AU§:‘2u,[| and

(b) In|AV{?), | vs. Z when o =d; =& =1,A=0and ¥ =2. (5,0) = (-2.2), (-1,1), (-1,2),

(0,0}, (0,1), (0,2), (1,0), (1,1) and (2,0), curves (i) — (ix) respectively.
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Fig. 18 Non-equilibrium interaction between three pairs of oblique modes: (a) In IAUS?;J’A and

(b) In|AV{Y

2;‘1’[! vs. T when g =@, = d; = 1, X =0 and X =5. (],[) = (_2,2), (-1,1), (_1’2),

(0,0), (0,1), (0,2), (1,0), (1,1) and (2,0), curves (i) - (ix) respectively.
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